将关系与Backref关联

backref关键字参数最初是在Object Relational Tutorial中引入的,在这里的许多示例中都提到过。它实际上做了什么?让我们从规范的UserAddress场景开始:

from sqlalchemy import Integer, ForeignKey, String, Column
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import relationship

Base = declarative_base()

class User(Base):
    __tablename__ = 'user'
    id = Column(Integer, primary_key=True)
    name = Column(String)

    addresses = relationship("Address", backref="user")

class Address(Base):
    __tablename__ = 'address'
    id = Column(Integer, primary_key=True)
    email = Column(String)
    user_id = Column(Integer, ForeignKey('user.id'))

上面的配置在User上建立了一个名为User.addressesAddress对象的集合。它还在Address上建立一个.user属性,它将引用父对象User

实际上,backref关键字只是在地址映射中放置第二个关系()的常见快捷方式,包括建立一个事件两侧的侦听器将镜像两个方向的属性操作。以上配置相当于:

from sqlalchemy import Integer, ForeignKey, String, Column
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import relationship

Base = declarative_base()

class User(Base):
    __tablename__ = 'user'
    id = Column(Integer, primary_key=True)
    name = Column(String)

    addresses = relationship("Address", back_populates="user")

class Address(Base):
    __tablename__ = 'address'
    id = Column(Integer, primary_key=True)
    email = Column(String)
    user_id = Column(Integer, ForeignKey('user.id'))

    user = relationship("User", back_populates="addresses")

上面,我们明确地向Address添加了一个.user关系。On both relationships, the back_populates directive tells each relationship about the other one, indicating that they should establish “bidirectional” behavior between each other. 这种配置的主要作用是关系将事件处理程序添加到两个属性中,这两个属性的行为是“当发生附加或设置事件时,使用这个特定属性名称将自己设置为传入属性”。行为如下所示。UserAddress实例开始。.addresses集合为空,.user属性为None

>>> u1 = User()
>>> a1 = Address()
>>> u1.addresses
[]
>>> print(a1.user)
None

但是,一旦将Address追加到u1.addresses集合中,集合和标量属性都将被填充:

>>> u1.addresses.append(a1)
>>> u1.addresses
[<__main__.Address object at 0x12a6ed0>]
>>> a1.user
<__main__.User object at 0x12a6590>

这种行为当然也适用于移除操作,以及双方的等效操作。例如,当.user再次设置为None时,Address对象将从反向集合中删除:

>>> a1.user = None
>>> u1.addresses
[]

.addresses集合和.user属性的操作完全在Python中进行,没有与SQL数据库进行任何交互。如果没有这种行为,一旦数据被刷新到数据库,并且在提交或到期操作发生后重新加载,适当的状态就会显现在两端。backref / back_populates行为具有以下优点:常见的双向操作可以反映正确的状态,而无需数据库往返。

请记住,当在单个关系上使用backref关键字时,就好像上面的两个关系是分别使用back_populates创建的。

Backref参数

我们已经确定,backref关键字仅仅是构建彼此引用的两个单独relationship()结构的快捷方式。这种快捷方式的一部分行为是,应用于relationship()的某些配置参数也将应用于其他方向 - 即描述模式级关系的参数,并且不太可能在相反的方向上是不同的。The usual case here is a many-to-many relationship() that has a secondary argument, or a one-to-many or many-to-one which has a primaryjoin argument (the primaryjoin argument is discussed in Specifying Alternate Join Conditions). 例如,如果我们将Address对象的列表限制为以“tony”开头的列表:

from sqlalchemy import Integer, ForeignKey, String, Column
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import relationship

Base = declarative_base()

class User(Base):
    __tablename__ = 'user'
    id = Column(Integer, primary_key=True)
    name = Column(String)

    addresses = relationship("Address",
                    primaryjoin="and_(User.id==Address.user_id, "
                        "Address.email.startswith('tony'))",
                    backref="user")

class Address(Base):
    __tablename__ = 'address'
    id = Column(Integer, primary_key=True)
    email = Column(String)
    user_id = Column(Integer, ForeignKey('user.id'))

我们可以通过检查所得到的财产来观察,双方的关系是否适用了这种连接条件:

>>> print(User.addresses.property.primaryjoin)
"user".id = address.user_id AND address.email LIKE :email_1 || '%%'
>>>
>>> print(Address.user.property.primaryjoin)
"user".id = address.user_id AND address.email LIKE :email_1 || '%%'
>>>

This reuse of arguments should pretty much do the “right thing” - it uses only arguments that are applicable, and in the case of a many-to- many relationship, will reverse the usage of primaryjoin and secondaryjoin to correspond to the other direction (see the example in Self-Referential Many-to-Many Relationship for this).

然而,我们常常会指定参数,这些参数仅适用于我们碰巧放置“backref”的那一边。This includes relationship() arguments like lazy, remote_side, cascade and cascade_backrefs. 对于这种情况,我们使用backref()函数代替字符串:

# <other imports>
from sqlalchemy.orm import backref

class User(Base):
    __tablename__ = 'user'
    id = Column(Integer, primary_key=True)
    name = Column(String)

    addresses = relationship("Address",
                    backref=backref("user", lazy="joined"))

在上面的例子中,我们只在Address.user一侧放置了一个lazy="joined"指令,表明当对Address进行查询时,应自动创建一个到User实体的连接,它将填充每个返回的Address.user属性。backref()函数将我们给它的参数格式化为一个由接收relationship()解释的形式,作为应用于它创建的新关系的附加参数。

单向后退

一种不寻常的情况是“单向后退”。这是backref的“back-populating”行为只在一个方向上需要的地方。一个例子是包含一个过滤primaryjoin条件的集合。我们希望根据需要将项追加到此集合中,并让它们在传入对象上填充“父”对象。但是,我们还想拥有不属于集合的项目,但仍具有相同的“父母”关联 - 这些项目不应该在集合中。

以我们前面的例子为例,我们建立了primaryjoin,该集合仅限于Address对象的电子邮件地址以tony开头,通常backref行为是所有项目都在两个方向上填充。我们不希望出现类似以下情况的此行为:

>>> u1 = User()
>>> a1 = Address(email='mary')
>>> a1.user = u1
>>> u1.addresses
[<__main__.Address object at 0x1411910>]

以上,Address对象与u1addresses集合中的条件不匹配。在刷新这些对象之后,提交的事务及其属性在重新加载时到期,addresses集合将在下次访问时触发数据库,​​并且不再具有此Address对象目前,由于过滤条件。但是,我们可以通过使用两个单独的relationship()结构,仅在一侧放置back_populates来消除Python端“backref”行为的这一不需要的一方:

from sqlalchemy import Integer, ForeignKey, String, Column
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import relationship

Base = declarative_base()

class User(Base):
    __tablename__ = 'user'
    id = Column(Integer, primary_key=True)
    name = Column(String)
    addresses = relationship("Address",
                    primaryjoin="and_(User.id==Address.user_id, "
                        "Address.email.startswith('tony'))",
                    back_populates="user")

class Address(Base):
    __tablename__ = 'address'
    id = Column(Integer, primary_key=True)
    email = Column(String)
    user_id = Column(Integer, ForeignKey('user.id'))
    user = relationship("User")

在上面的场景中,将Address对象附加到User.addresses集合将始终建立.user >属性在Address上:

>>> u1 = User()
>>> a1 = Address(email='tony')
>>> u1.addresses.append(a1)
>>> a1.user
<__main__.User object at 0x1411850>

但是,将User应用于Address.user属性不会将Address对象附加到采集:

>>> a2 = Address(email='mary')
>>> a2.user = u1
>>> a2 in u1.addresses
False

Of course, we’ve disabled some of the usefulness of backref here, in that when we do append an Address that corresponds to the criteria of email.startswith('tony'), it won’t show up in the User.addresses collection until the session is flushed, and the attributes reloaded after a commit or expire operation. 虽然我们可以考虑一个在Python中检查这个标准的属性事件,但它开始跨越Python中复制太多SQL行为的路线。backref行为本身只是对这种哲学的轻微超越 - SQLAlchemy试图将这些原则保持在最低水平。